ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
V. S. Udintsev, G. Turri, E. Asp, Ch. Schlatter, T. P. Goodman, O. Sauter, H. Weisen, P. Blanchard, S. Coda, B. P. Duval, E. Fable, A. Gudozhnik, P. F. Isoz, M. A. Henderson, I. Klimanov, X. Llobet, Ph. Marmillod, A. Mueck, L. Porte, H. Shidara, G. Giruzzi, M. Goniche, F. Turco
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 161-168
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1495
Articles are hosted by Taylor and Francis Online.
Electron cyclotron emission (ECE) diagnostics on Tokamak à Configuration Variable (TCV) allow study of the electron temperature evolution in time with good spatial and temporal resolution at the high field side and low field side at various lines of sight. That is why ECE is being widely used to obtain both qualitative and quantitative information on heat transport, magnetohydrodynamics (MHD) phenomena, and fast electron dynamics. In this paper, a new regime on TCV with regular oscillations of the electron temperature in electron cyclotron current drive (ECCD) driven fully noninductive discharges and in discharges with a combination of ohmic/ECCD driven current is discussed. These oscillations are reminiscent of the oscillations of the central electron temperature (O-regime) seen on Tore Supra in fully noninductive lower hybrid current drive plasmas. A link between evolutions of the electron temperature, the MHD modes, and the current density profile on TCV is considered. In order to yield information on the properties of microturbulence of electrostatic and magnetic origin on TCV, a correlation ECE radiometer is currently under development. A technical description of the diagnostic is presented in this paper.