ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
V. S. Udintsev, G. Turri, E. Asp, Ch. Schlatter, T. P. Goodman, O. Sauter, H. Weisen, P. Blanchard, S. Coda, B. P. Duval, E. Fable, A. Gudozhnik, P. F. Isoz, M. A. Henderson, I. Klimanov, X. Llobet, Ph. Marmillod, A. Mueck, L. Porte, H. Shidara, G. Giruzzi, M. Goniche, F. Turco
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 161-168
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1495
Articles are hosted by Taylor and Francis Online.
Electron cyclotron emission (ECE) diagnostics on Tokamak à Configuration Variable (TCV) allow study of the electron temperature evolution in time with good spatial and temporal resolution at the high field side and low field side at various lines of sight. That is why ECE is being widely used to obtain both qualitative and quantitative information on heat transport, magnetohydrodynamics (MHD) phenomena, and fast electron dynamics. In this paper, a new regime on TCV with regular oscillations of the electron temperature in electron cyclotron current drive (ECCD) driven fully noninductive discharges and in discharges with a combination of ohmic/ECCD driven current is discussed. These oscillations are reminiscent of the oscillations of the central electron temperature (O-regime) seen on Tore Supra in fully noninductive lower hybrid current drive plasmas. A link between evolutions of the electron temperature, the MHD modes, and the current density profile on TCV is considered. In order to yield information on the properties of microturbulence of electrostatic and magnetic origin on TCV, a correlation ECE radiometer is currently under development. A technical description of the diagnostic is presented in this paper.