ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
V. S. Udintsev, G. Turri, E. Asp, Ch. Schlatter, T. P. Goodman, O. Sauter, H. Weisen, P. Blanchard, S. Coda, B. P. Duval, E. Fable, A. Gudozhnik, P. F. Isoz, M. A. Henderson, I. Klimanov, X. Llobet, Ph. Marmillod, A. Mueck, L. Porte, H. Shidara, G. Giruzzi, M. Goniche, F. Turco
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 161-168
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1495
Articles are hosted by Taylor and Francis Online.
Electron cyclotron emission (ECE) diagnostics on Tokamak à Configuration Variable (TCV) allow study of the electron temperature evolution in time with good spatial and temporal resolution at the high field side and low field side at various lines of sight. That is why ECE is being widely used to obtain both qualitative and quantitative information on heat transport, magnetohydrodynamics (MHD) phenomena, and fast electron dynamics. In this paper, a new regime on TCV with regular oscillations of the electron temperature in electron cyclotron current drive (ECCD) driven fully noninductive discharges and in discharges with a combination of ohmic/ECCD driven current is discussed. These oscillations are reminiscent of the oscillations of the central electron temperature (O-regime) seen on Tore Supra in fully noninductive lower hybrid current drive plasmas. A link between evolutions of the electron temperature, the MHD modes, and the current density profile on TCV is considered. In order to yield information on the properties of microturbulence of electrostatic and magnetic origin on TCV, a correlation ECE radiometer is currently under development. A technical description of the diagnostic is presented in this paper.