ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
D. G. Czechowicz, J. A. Dorman, J. C. Geronimo, C. J. Chen
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 631-637
Technical Paper | doi.org/10.13182/FST51-631
Articles are hosted by Taylor and Francis Online.
We developed a production tungsten sputter coating process to uniformly deposit tungsten on 840 m outer diameter GDP shells using a bounce coating technique. We were able to control the tungsten-coating rate and therefore coating thickness based on gravimetric analysis. At the end of our work we could routinely produce uniform 0.5 m tungsten coatings on GDP shells with a Δ wall 0.04 m. Techniques were developed and applied to measure coating uniformity based on x-radiography and x-ray fluorescence data. Typical surface roughness values for bounce coated shells having a 0.5 m tungsten coating were 40 to 50 nm RMS. Stationary GDP shells were coated with 0.5 m tungsten and found to have surface roughness approaching 10 nm RMS, which was similar to the roughness of the underlying GDP mandrel surface. This result indicates that coating processes with less agitation such as tap or roll coating may produce much smoother tungsten coatings