ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
David J. Nagel, Kamron C. Fazel
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 463-468
Other Concepts and Assessments | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13464
Articles are hosted by Taylor and Francis Online.
“Low energy nuclear reactions” or LENR is the name now given to what was initially and poorly called “cold fusion”. Over twenty years of scientific research on LENR have resulted in some instances of energy gains exceeding 10, the same value as the goal of the International Thermonuclear Experimental Reactor, which could be achieved in about a decade. Some of the key experimental data from electrochemical loading of deuterons into Pd are summarized in this paper. In the past two years, engineered LENR systems reportedly have energy gains exceeding 100. The devices, which were said to exhibit such very high energy amplification values, used gas loading of protons onto and maybe into Ni. The character and stated results of the remarkable tests are summarized. Lower gain versions of such systems are now being mass manufactured for delivery to customers during 2011. Requirements for robust validation of the performance of such devices are discussed. A comparison of the history and prospects for both hot and “cold” fusion is presented. It is concluded that small and distributed LENR sources of energy might be in common use by the time hot fusion in large central facilities is finally ready for commercialization.