ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Talen and Amazon expand their partnership for Pennsylvania
Talen Energy Corporation and Amazon have signed an expanded power purchase agreement (PPA) whereby Talen agrees to supply electricity from its Susquehanna nuclear power plant for AI operations and other cloud technologies at Amazon Web Services’ data center campus next to the power plant.
Santiago Cuesta-Lopez, J. M. Perlado
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 385-390
Materials | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13450
Articles are hosted by Taylor and Francis Online.
We report non-equilibrium Molecular Dynamics simulations that provide a nanoscale view for the modeling of shock wave generation in any kind of material. Our methodology reported here is able to cover similar times and length scales as experiments. We are studying the propagation of shock waves, and their consequences: structural transformations and induced melting. We apply our methodology not only to single crystalline materials like Ta, W, but also in double layer conformations of bcc/fcc/bcc and bcc/bcc/bcc materials, with clear interest for Nuclear Fusion Technology. Preliminary results point that W and Ta behave more efficiently in terms of uniformity under shock propagation than lighter materials. Moreover, we show that shocks in double layer structures propagate and generate pressure more efficiently than common structures.