ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
M. L. Walker
Fusion Science and Technology | Volume 59 | Number 3 | April 2011 | Page 618
Appendix A | Fourth ITER International Summer School (IISS2010) / Extended Abstracts | doi.org/10.13182/FST11-A11702
Articles are hosted by Taylor and Francis Online.
The primary objectives of control are somewhat different from those of much of fusion plasma physics. Magnetic fusion physics has historically focused on understanding the physics of plasmas in magnetic confinement devices, whereas fusion plasma control seeks to capitalize on the understanding already gained to cause the system (fusion device plus plasma) to behave in certain desirable ways. For example, early uses of plasma control in fusion devices had simple goals such as extending the survival of discharges by minimizing plasma-wall interaction or by regulating density. Present applications are
primarily aimed at achieving conditions with better potential fusion performance or conditions under which fusion plasmas can be more easily studied. The demanding performance requirements and significant constraints expected on control of future fusion reactors suggest that plasma control is a critical enabling technology for progress toward commercial fusion power. A greater understanding of control techniques for fusion plasmas and a more widespread use of these techniques in existing devices are required in order to develop the solutions needed. [first paragraph from extended abstract]