ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Yang-Il Jung, Jeong-Yong Park, Byoung-Kwon Choi, Jae Sung Yoon, Dong Won Lee, Seungyon Cho
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 221-224
Materials Development | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-497
Articles are hosted by Taylor and Francis Online.
Corrosion of ferritic-martensitic steel (FMS) Gr. 91 was performed in static Pb-15.7Li melt at 450 °C for up to 3000 h. Preferential grain boundary corrosion along with a homogeneous dissolution was observed. In addition, Al2O3 was coated to prevent the surface recession of FMS. Al2O3 was deposited on FMS using an electron-beam evaporated physical vapor deposition. The as-coated layer was crystallized through a heat-treatment at above 950 °C for 2 h. The alumina coating layer was very stable and effective to prevent the corrosion of FMS. Although Al2O3 was decomposed in 3000 h, the corrosion barrier survived up to 2000 h even in an oxygen-containing harsh environment.