ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2022 ANS Annual Meeting
June 12–16, 2022
Anaheim, CA|Anaheim Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
June 2022
Nuclear Technology
Fusion Science and Technology
Latest News
Cost drivers of nuclear steam cycle construction
Interest in reducing carbon emissions around the world continues to climb. As a complement to the increasing deployment of variably generating renewables, advanced nuclear is commonly shown in net-zero grid modeling for 2050 because it represents firm electricity production that can flex in output with load demands.1 However, these projections are challenged by the high levelized cost of electricity associated with legacy nuclear construction, which is often more than double that of modern combined-cycle gas turbine (CCGT) plants.
12th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies (NPIC&HMIT 2021)
Technical Session|Panel
Tuesday, June 15, 2021|3:30–5:15PM (4:30–6:15PM EDT)
Session Chair:
M. N. Ericson
Session Organizer:
Alternate Chair:
Pradeep Ramuhalli
Staff Producer:
Janet Davis (ANS)
Present day electronics technologies for sensing, signal processing, and communications in nuclear power plants are not well suited for high radiation and high temperature placement, such as near the reactor core. As a result, sensing and communication technologies involving electronics are generally implemented remotely, utilize lengthy wired connections, depend on high-cost maintenance or replacement plans, or are omitted altogether. Most present-day commercial radiation hardened electronics offerings are largely directed towards low earth orbit (satellite) applications. Consequently, these designs seldom exceed a few hundred krad total ionizing dose (TID) as they are primarily designed to exhibit resistance to single-event effects (SEEs), making them unsuitable for near-core reactor application. New technologies are needed to advance this field and improve the process of reactor sensing and control. This panel will provide an opportunity to further identify and address the important issues associated with electronics placement near the reactor core. Points of discussion will include general identification of the sensing requirements for reactor environments including justifications for placement in particularly harsh zones, reviewing radiation effects on electronic devices, identification and assessment of the state-of-the-art in rad-hard and high temperature electronics and present limitations, and methods forward for improving electronics suitability for near-core application. Additionally, availability and dissemination of data for commercial and emerging sensors, electronics, and systems will be discussed. The realization of higher radiation and temperature resistant electronics will enable more prolific use of sensing, processing, control, and communication technologies in near- or in-core locations resulting in improved safety, efficiency and cost for in-service reactors and future advanced reactor designs.
To access the session recording, you must be logged in and registered for the meeting.
Register NowLog In
To access session resources, you must be logged in and registered for the meeting.
To join the conversation, you must be logged in and registered for the meeting.