ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE lays out fuel cycle goals in RFI to states
The Department of Energy has issued a request for information inviting states to express interest in hosting Nuclear Lifecycle Innovation Campuses. According to the DOE, the proposed campuses could support work across the nuclear fuel life cycle, with a primary focus on fuel fabrication, enrichment, spent fuel reprocessing or recycling, separations, and radioactive waste management.
The DOE said the RFI marks the first step toward potentially establishing voluntary federal-state partnerships designed to build a coherent, end-to-end nuclear energy strategy for the country.
Kuniki Hata, Hiroyuki Inoue, Takao Kojima, Akihiro Iwase, Shigeki Kasahara, Satoshi Hanawa, Fumiyoshi Ueno, Takashi Tsukada
Nuclear Technology | Volume 193 | Number 3 | March 2016 | Pages 434-443
Technical Paper | doi.org/10.13182/NT15-32
Articles are hosted by Taylor and Francis Online.
Gamma radiolysis experiments on solutions of a mixture of sodium chloride (NaCl) and sodium bromide (NaBr) were conducted to confirm the validity of radiolysis calculations for simulated seawater solutions and to determine the importance of bromide anion (Br−) in the production of hydrogen peroxide (H2O2) via water radiolysis. The H2O2 concentration in each solution was measured after irradiation and compared with that obtained from radiolysis calculations. It was found that the calculated and experimental results were in good agreement. The concentration of H2O2 in a 0.6 M NaCl solution increased approximately three times on the addition of 1 mM NaBr. The result showed that Br− plays an important role in the production of H2O2 by water radiolysis, presumably through the reactions of Br− with hydroxyl radical (●OH). For 1 mM NaCl solutions, there is a minimum production rate of H2O2 at pH 8, which increases when the pH changes to either lower or higher values. It was considered that the hydrated electron also plays an important role in H2O2 production under these acidic and alkaline conditions.