ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Yuan Zhou, Bing Chen, Hongyu He, Bo Li, Xinlin Wang
Nuclear Technology | Volume 206 | Number 1 | January 2020 | Pages 32-39
Technical Paper | doi.org/10.1080/00295450.2019.1613850
Articles are hosted by Taylor and Francis Online.
With large-scale molecular dynamics, we investigate displacement cascades in monocrystalline silicon with regard to the effects of temperature, strain, and primary knock-on atom energy on defect generation and evolution. With temperature increasing, both the thermal spike region and the peak defect count increase, while the effect of temperature on the surviving defect number is negligible. Nevertheless, higher temperature shows negative effect on clustering of vacancy. The effects of uniaxial strain on defect production and clustering is negligible, while its hydrostatic counterpart is evident. With the increment of hydrostatic strain, both the peak and surviving defect count increase (decrease) under tensile (compressive) hydrostatic loading. Meantime, tensile hydrostatic strain will promote defect clustering. More defects and larger defect clusters are produced at higher energy. Otherwise, interstitials are hard to form clusters under different conditions.