ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE lays out fuel cycle goals in RFI to states
The Department of Energy has issued a request for information inviting states to express interest in hosting Nuclear Lifecycle Innovation Campuses. According to the DOE, the proposed campuses could support work across the nuclear fuel life cycle, with a primary focus on fuel fabrication, enrichment, spent fuel reprocessing or recycling, separations, and radioactive waste management.
The DOE said the RFI marks the first step toward potentially establishing voluntary federal-state partnerships designed to build a coherent, end-to-end nuclear energy strategy for the country.
Graydon L. Yoder, Jr., David G. Morris, Charles B. Mullins
Nuclear Technology | Volume 68 | Number 3 | March 1985 | Pages 355-369
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT85-A33581
Articles are hosted by Taylor and Francis Online.
Rod bundle burnout data from 30 steady-state and 3 transient tests were obtained from experiments performed in the Thermal Hydraulic Test Facility at the Oak Ridge National Laboratory. The tests covered a parameter range relevant to intact core reactor accidents ranging from large break to small break loss-of-coolant conditions. Instrumentation within the 64-rod test section indicated that burnout occurred over an axial range within the bundle. The distance from the point where the first dry rod was detected to the point where all rods were dry was up to 60 cm in some of the tests. The burnout data should prove useful in developing new correlations for use in reactor thermal-hydraulic codes. Evaluation of several existing critical heat flux correlations using the data show that three correlations, the Barnett, Bowring, and Katto correlations, perform similarly and correlate the data better than the Biasi correlation.