ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Richard R. Hobbins, Malcolm L. Russell, Charles S. Olsen, Richard K. McCardell
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 1005-1012
Late Paper | TMI-2: Decontamination and Waste Management / Nuclear Safety | doi.org/10.13182/NT89-A27692
Articles are hosted by Taylor and Francis Online.
The behavior of melts in severe accident sequences affects the nature (composition and fission product inventory) of the debris released from the vessel upon lower head failure in unmitigated accidents and the coolability of debris at various stages in managed accidents. Core melting progressed further in the Three Mile Island Unit 2 (TMI-2) accident than in any of the severe core damage experiments that have been conducted since the accident, and, therefore, TMI-2 represents a valuable source of information that extends into later phases of core melt progression, including melt relocation into the lower plenum. Examination and evaluation of melts within the TMI-2 reactor vessel indicate that melts can form uncoolable geometries in the core but they can also break through the surrounding crust, massively relocate into the lower plenum, and fragment upon interaction with water resident in the lower plenum to form a rubble bed of coolable geometry. The chemistry of melts, particularly the oxygen potential, affects fission product chemical form and, therefore, retention in the melt. The chemistry also determines interactions of the melts with reactor pressure vessel components.