ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Katy Huff on the impact of loosening radiation regulations
Katy Huff, former assistant secretary of nuclear energy at the Department of Energy, recently wrote an op-ed that was published in Scientific American.
In the piece, Huff, who is an ANS member and an associate professor in the Department of Nuclear, Plasma, and Radiological Engineering at the University of Illinois–Urbana-Champaign, argues that weakening Nuclear Regulatory Commission radiation regulations without new research-based evidence will fail to speed up nuclear energy development and could have negative consequences.
Alexis Maldonado, Christopher Perfetti
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2086-2098
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2162782
Articles are hosted by Taylor and Francis Online.
When designing experiments for full-scale reactor systems, the Monte Carlo N-Particle® and Whisper codes can be used to create neutronic models and compare the similarity of two nuclear systems via correlation coefficients for , the effective multiplication factor. This paper applies this framework to a conceptual heat pipe yttrium-hydride-moderated microreactor system and experiments, but the method can be applied generally to any nuclear reactor design. The framework is intended as a supplement to other neutronics/thermal/multiphysics analyses and provides an objective method to measure the neutronic similarity of two systems. By analyzing the shared nuclear data uncertainty, as well as sensitivity to nuclear data over all neutron energies, highly informative experiments can be designed to aid in the development of microreactor and other advanced reactor technologies and systems.