ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Shifa Wu, Jiashuang Wan, Zhi Chen, Longtao Liao, Kai Xiao, Pengfei Wang
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 660-675
Technical Paper | doi.org/10.1080/00295639.2022.2123204
Articles are hosted by Taylor and Francis Online.
To improve the economy and safety of small pressurized water reactors (SPWRs) with flexible operating characteristics, the reactor power control system should process excellent robustness to provide satisfactory control performances at different operating conditions. This paper proposes four control strategies for reactor power control of SPWRs based on the linear quadratic Gaussian with loop transfer recovery (LQG/LTR) robust control method, including the single-loop reactor power feedback control (RPFC), single-loop average temperature feedback control, dual-loop feedback control, and modified dual-loop feedback control (MDFC) strategies. The corresponding LQG/LTR controllers in the reactor power control system of a SPWR were designed to assess the performance of the four control strategies. The simulation results show that the LQG/LTR controller with the MDFC strategy can provide good control performances for both reactor power and average coolant temperature among the four control strategies while the controller-based single-loop feedback control shows poor control of the reactor power or average coolant temperature. Meanwhile, compared with the existing conventional reactor power control system, the designed robust control system employing the MDFC strategy can provide better control performance for the reactor power and average coolant temperature in full-power operation of 100% to 90% rated power and low-power operation of 25% to 35% rated power with the differential control rod worth taken as 4 pcm/step and 24 pcm/step, indicating its effectiveness and superiority.