ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Brian J. Ade, Daniel P. Schappel, Benjamin R. Betzler, Grant W. Helmreich, Alberto Talamo, Dylan D. Richardson, Michael P. Trammel, Brian P. Jolly, Austin T. Schumacher, Kurt A. Terrani
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1517-1538
Technical Paper | doi.org/10.1080/00295639.2022.2049995
Articles are hosted by Taylor and Francis Online.
Detailed analysis of the particle distribution in Transformational Challenge Reactor fuel elements indicates that particle packing is not random; instead, it follows a relatively ordered structure near fuel element surfaces. Discrete particle neutronic simulations indicate that the core reactivity is not impacted when assuming homogenization of particles with the silicon carbide matrix. However, the neutronic power distribution resulting from the ordered packing structure indicates that the highest-power particles reside at the top and bottom of the fuel elements and nearest the YH1.85 moderator rods. The power distribution results were applied to thermomechanical simulations using mesh-based power distributions. Previous results indicated high stress at the bottom of the fuel element, where packing is most ordered. To reduce this stress concentration, additively manufactured protrusions were added to the bottom of a test fuel element to disrupt dense particle packing. These protrusions reduced the overall power peaking, but the thermomechanical simulations did not indicate a significant change in the fuel element’s maximum stress or failure probability.