ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The Meta-Vistra deal: A closer look
With last Friday's announcement regarding its vision for nuclear energy, Meta has entered into 20-year power purchase agreements (PPAs) for more than 2,600 MW of electricity from a combination of three Vistra-owned nuclear plants to support the tech behemoth's planned operations in the PJM region.
Brian J. Ade, Daniel P. Schappel, Benjamin R. Betzler, Grant W. Helmreich, Alberto Talamo, Dylan D. Richardson, Michael P. Trammel, Brian P. Jolly, Austin T. Schumacher, Kurt A. Terrani
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1517-1538
Technical Paper | doi.org/10.1080/00295639.2022.2049995
Articles are hosted by Taylor and Francis Online.
Detailed analysis of the particle distribution in Transformational Challenge Reactor fuel elements indicates that particle packing is not random; instead, it follows a relatively ordered structure near fuel element surfaces. Discrete particle neutronic simulations indicate that the core reactivity is not impacted when assuming homogenization of particles with the silicon carbide matrix. However, the neutronic power distribution resulting from the ordered packing structure indicates that the highest-power particles reside at the top and bottom of the fuel elements and nearest the YH1.85 moderator rods. The power distribution results were applied to thermomechanical simulations using mesh-based power distributions. Previous results indicated high stress at the bottom of the fuel element, where packing is most ordered. To reduce this stress concentration, additively manufactured protrusions were added to the bottom of a test fuel element to disrupt dense particle packing. These protrusions reduced the overall power peaking, but the thermomechanical simulations did not indicate a significant change in the fuel element’s maximum stress or failure probability.