ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Akio Yamamoto, Tomohiro Endo, Go Chiba, Kenichi Tada
Nuclear Science and Engineering | Volume 196 | Number 11 | November 2022 | Pages 1267-1279
Technical Paper | doi.org/10.1080/00295639.2022.2087833
Articles are hosted by Taylor and Francis Online.
The resonance upscattering effect (the thermal agitation effect) is implemented in the generation capability of multigroup neutron cross sections of the FRENDY nuclear data processing system. The resonance upscattering effect is considered by (1) the variation of self-shielding factors (effective cross sections) due to the change in the ultra-fine group spectrum and (2) the variation of group-to-group elastic scattering cross sections. Since the upscattering effect is considered in the ultra-fine group spectrum calculation, an iteration calculation is necessary to consider the upscattering. The impacts of the iteration strategy (Jacobi or Gauss-Seidel), as well as the number of iterations, are discussed. In the verification calculations, impacts on the ultra-fine group spectrum, effective cross sections, and neutronics characteristics (the Doppler effect) are confirmed. The effect of energy group structure and the impact of resonance upscattering treatments on the Doppler effect through the variation of effective cross sections and the elastic scattering matrix are investigated. The results indicate that FRENDY can provide appropriate multigroup cross sections considering the resonance upscattering effect.