ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Robert Martin
Nuclear Science and Engineering | Volume 48 | Number 2 | June 1972 | Pages 125-138
Technical Paper | doi.org/10.13182/NSE72-A22466
Articles are hosted by Taylor and Francis Online.
This article presents the results of an experimental study of the void fraction at high pressure (80 to 140 kg/cm2) in two rectangular channels (5 × 0.2 and 5 × 0.28 cm) simulating a subchannel of a nuclear reactor plate-type fuel element. The method enabled the distribution of the local void fraction in a cross section to be measured at about 100 locations; from these local values it was possible to determine accurate mean values and to precisely quantitate the influence of the parameters: pressure, mass velocity, and heat flux. This distributions of void fractions, among the first to be determined in this range of pressures, were obtained from 120 000 systematic, individual measurements, sufficient to allow accurate interpolations in the experimental region under consideration which included subcooled conditions. These results enabled testing certain models presented in the literature. Analyses with the Bowring model, for example, are in good agreement with present experimental data at 80 kg/cm2. The purpose of this study was not to establish a new model but to furnish accurate data for verification or, if necessary, adjustment of existing models.