ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Restart progress and a new task force in Iowa
This week, Iowa Gov. Kim Reynolds signed an executive order to form the Iowa Nuclear Energy Task Force, the purpose of which will be to “advise her, the General Assembly, and relevant state agencies on the development and advancement of nuclear energy technologies and infrastructure in the state.”
Mitsushi Abe, Kazuhiro Takeuchi
Fusion Science and Technology | Volume 29 | Number 2 | March 1996 | Pages 277-293
Technical Paper | Plasma Engineering | doi.org/10.13182/FST96-A30714
Articles are hosted by Taylor and Francis Online.
Tokamak operation techniques to control the poloidal magnetic field using multivariable poloidal field coils (MPFCs) were applied to the Hitachi tokamak HT-2, Two problems encountered in operating a tokamak with MPFCs were identified: low-voltage startup and equilibrium control without interference. The key to their solution was accurate control of the poloidal magnetic field. To obtain multipole fields, a singular value decomposition was applied to a response matrix from the coil current to the magnetic flux value at the plasma surface region. The multipole fields are orthogonal bases of the poloidal field, and the interference was cleared using these modes. A control technique using the multipole fields was applied to control the null point position of the poloidal magnetic field during breakdown, which made it possible to get breakdown with a low loop voltage. During the flattop phase, good controllability without interference was obtained using the concept of a multipole magnetic field.