ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
E.P. Kruglyakov, G.I. Dimov, A.A. Ivanov, V.S. Koidan
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 16-22
Overview | doi.org/10.13182/FST03-A11963557
Articles are hosted by Taylor and Francis Online.
Mirrors are the only one class of fusion systems which completely differs topologically from the systems with closed magnetic configurations. At present, there modern types of different mirror machines for plasma confinement and heating exist in Novosibirsk (Gas Dynamic Trap, -GDI, Multi-mirror, -GOL-3, and Tandem Mirror, -AMBAL-M). All these systems are attractive from the engineering point of view because of very simple axisymmetric geometry of magnetic configurations. In the present paper, the status of different confinement systems is presented. The experiments most crucial for the mirror concept are described such as a demonstration of different principles of suppression of electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of plasma confinement in axisymmetric geometric of magnetic field (GDT, AMBAL-M), an effective heating of a dense plasma by relativistic electron beam (GOL-3), observation of radial diffusion of quiescent plasma with practically classical diffusion coefficient (AMBAL-M), etc.
It should be mentioned that on the basis of the GDT it is possible to make a very important intermediate step. Using “warm” plasma and oblique injection of fast atoms of D and T one can create a powerful 14 MeV neutron source with a moderate irradiation area (about 1 square meter) and, accordingly, with low tritium consumption. It should be mentioned that there is no one candidate to the plasma based neutron source with such a low (about 150 gram/year) tritium consumption.
The main plasma parameters achieved are presented.