ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
E. Greenspan, Y. Karni
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1605-1610
Solid Breeder Blanket | doi.org/10.13182/FST86-A24961
Articles are hosted by Taylor and Francis Online.
Possibilities for maximizing the tritium breeding ratio (TBR) and for minimizing the major radius of the Next European Torus (NET) fusion device are investigated using the nucleonic optimization code SWAN. It is found that a NET like device can be designed to be tritium self-sufficient even when tritium breeding is restricted to the outboard blanket, while enabling a 25 cm reduction in the major radius of the device, Additional 20 cm major radius reduction is expected from replacing the conventional steel-water inboard shield by an optimized shield based on a tungsten-copper composite material and titanium-hydride.