ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Konor Frick, Alexander Duenas, Piyush Sabharwall, JunSoo Yoo, Su-Jong Yoon, Carl Stoots, James E. O’Brien, Thomas O’Brien (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1720-1729
Nuclear Renewable Hybrid Energy Systems (NR-HES) is an area of current research interest as wind and solar grid penetrations continue to increase. The goal of these systems is to enable nuclear plant operation at ~100% capacity and store excess energy, when available, for later use. Sensible heat Thermal Energy Storage (TES) systems have been shown to be an effective thermal load management strategy allowing nuclear reactor systems to operate at effectively 100% full power while storing excess thermal energy for recovery at a later time. Thermal storage has been modeled extensively around the world. However, little in the way of experimentation is being conducted. Experimentation is needed to verify the dynamics and control of TES systems. To complement the modeling and simulation efforts on nuclear-renewable hybrid energy systems, Idaho National Laboratory (INL) is designing a Thermal Energy Delivery System (TEDS). The system will provide a means of distributing thermal energy to and from various co-located systems located in the INL Dynamic Energy Transport and Integration Laboratory (DETAIL). DETAIL will include a high-pressure high-temperature water flow loop simulating a Pressurized Water Reactor (PWR), a 25 kWe High-Temperature Steam Electrolysis (HTSE) unit (first potential heat user/customer) and a packed-bed Thermal Energy Storage (TES) system. The thermal energy transfer from TEDS can be used in a flexible, dynamic manner incorporating charging and discharging cycles from the TES system, to support test/demonstration operations for nuclear-renewable hybrid energy systems (N-R HES) applications. This paper discusses the design, operation, instrumentation (sensors), and control strategies to enable the dynamic operation of TEDS.