The ability of microprocessor-based I&C safety platforms to process a large amount of complex parameters as well as the difficulty to maintain older analog equipment led to the gradual replacement of the hardwired technologies installed long ago. However, their complexity and cost, combined with new safety requirements, has generated a renewed interest for the Hardwired technologies that are usually simpler and cheaper to qualify. As Hardwired systems still have limited data processing, they usually cannot be used efficiently for the complete protection system of complex reactors or architectures. They however are ideal for other functions such as diverse actuation systems, priority logic, post-accident systems or even main protection systems for simple architectures such as research reactors’. Nevertheless, most existing “non-programmed” technologies have not evolved much since their creation several decades ago and therefore suffer from obsolescence issues and capability limitations. Thus the creation of a truly modern, performant and purely hardwired technology (i.e. not based on FPGA) represents a progress in the catalogue of next generation technologies available for 1E/Cat A. safety I&C. The development of a modern I&C platform is always a challenge as the requirements are continuously evolving toward more stringent standards, especially for safety classified I&C systems. In order to meet all these requirements, the platform shall provide state of the art electronic features and its design criteria shall include flexibility, scalability and space optimization as well as integrated communication. Consequently, the creation of a next generation safety I&C platform based on purely hardwired technology represents a significant challenge and this paper will present the method used by Rolls-Royce to achieve a successful result for its new Hardline platform.