ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Nick DeJulia, Trevor Jones (AMS)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1251-1259
A pressurized water reactor (PWR) is equipped with a magnetically coupled positioning system known as a control rod drive mechanism (CRDM). In many cases, the plant system that measures the position of the control rods in the reactor core is the digital rod position indication (DRPI) system. The DRPI system is designed to continuously sense and display the positions of each of the control and shutdown rods. Both of these systems consist of coils above the reactor head, connectors at the reactor head and at the containment penetration, instrumentation and power cabinets, and long runs of interconnecting cables in between these system components. The objective of cable testing is to evaluate the condition of the rod control and position indication coils, connections, cables and to identify any defects or anomalies that may adversely affect their normal operation. Various electrical measurements can provide insight into the health and reliability of these rod control and rod position cable circuits. Some measurements are used to identify configuration anomalies, others test the integrity of connectors and proper isolation from station ground, and some validate the health of the coil to identify resistive connections, insulation degradation, or turn-to-turn shorts. This systematic approach to rod control and rod position coil and cable testing increases system reliability, reduces the likelihood of unplanned outages from dropped rods, and reduces outage times and maintenance costs which in turn reduces costs for the electrical utility.