ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
José Enrique Gilabert, Jesús La Parra, Mateo Ramos (Tecnatom), Cristian Marciulescu (EPRI)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1170-1178
The main objective of an Alarm Management System (AMS) is the reduction of the operator alarm overload that is present in the advanced alarm systems currently being installed in new plant project applications, by identifying and presenting only those alarms with high operational value and important information that require an operator immediate action to address the alarm source. The main issues about AMS are the great number of defined alarms (especially in digital I&C systems) and the lack of distinction between informational notices and true alarms (especially overwhelming during normal, non-emergency events). As a result, “avalanches” of alarms occur during events, complicating and delaying the plant safety status identification while increasing the operator´s workload and cognitive stress. In order to achieve the desired reduction of the operator workload alarm overload in existing and upcoming new plants, a methodology and a software application have been developed to focus into two principal processes: the prioritization and the application of filtering techniques. The alarm generation is supposed already defined by the plant and the presentation is dependent on the selected platform. The proposed scheme applies a prioritization process (static and dynamic) that organizes the alarms according to their severity and subsequently, followed by several filtering techniques that reduce the number of alarms shown to the operator. The static prioritization analyzes qualitatively and quantitatively each individual alarm considering its severity and available response time. The dynamic prioritization modifies this value depending on its relevance during the current plant operating condition (combination of a plant operating mode and an event). Once the alarms have been prioritized, they are classified by means of automatic filtering techniques so that only those significant for the ongoing plant operating condition are showed to the operator as “important” thus reducing the associated workload and cognitive stress. EPRI, through its Advanced Nuclear Technologies (ANT) program, sponsored this research project designed to test and validate this methodology and to demonstrate the improvement of the operator´s awareness and understanding of alarm status. This paper reflects the main results of this research project conducted between May 2017 and October 2018.