ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Kurt Davis, Richard Skifton Josh Daw, Troy Unruh, Ashley Lambson, Pattrick Calderoni (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 602-611
The use of X-ray inspection has evolved into an integral process to aid in the design and testing of in-pile instrumentation. Two types of X-ray inspection, three dimensional computed tomography (3D CT) and radioscopy, have been employed at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL). Early in the development of the high temperature irradiation resistant thermocouple (HTIR TC), radioscopy, which produces a two dimensional X-ray image or digital radiograph, was key in development of the HTIR TC. Radiographs were originally produced using an image intensifier linked to a CCD camera. Later upgrades to the radioscopy process replaced the image intensifier and CCD camera with a flat panel detector. With the increased dynamic range of the flat panel detector, additional discoveries were made about the performance of the HTIR TC. Three dimensional computed tomography is a recent tool added to the arsenal of nondestructive evaluations performed at the HTTL. This capability has enabled the development of new in-pile instrumentation to a level that would not have been achievable without this X-ray inspection process. Examples include the diamond temperature sensor, the transient hot wire thermal conductivity probe, the ultrasonic thermometer and the micro pocket fission detector. This paper will discuss the evolution X-ray inspections at the HTTL and their contribution to the development of in-pile instrumentation.