ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Brandon Wilson, Kelly McCary, Christian Petrie (ORNL), Thomas Blue (Ohio State)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 478-487
Sapphire optical fiber, with an internal cladding and an array of type-II Bragg gratings inscribed in it, was tested in-situ in the Ohio State Research Reactor (OSURR) to determine the viability of using sapphire as a sensor in an ionizing radiation environment. The sapphire fiber was attached to an optical frequency domain reflectometer (OFDR), which recorded the temperature of the fiber, at the locations of the gratings along the fiber, during the irradiations in the OSURR. The sapphire Bragg gratings survived the irradiations in the OSURR and produced reasonable temperature measurements for ~2.1 Equivalent Full Power Hours (EFPHs) of irradiation, corresponding to a neutron fluence of ~1.7 x 1017 n/cm2. The lead-in silica fiber, and perhaps the sapphire fiber itself, exhibited darkening, which affected sensing during the third day of irradiation; but adjusting the sensitivity of the OFDR corrected for this. During the reactor irradiations on the following day, the fiber produced reasonable temperature measurements to a four day total irradiation of ~8.8 EFPH, corresponding to a neutron fluence of ~7.3 x 1017 n/cm2. In summary, the sapphire sensors survived to fluences that are larger than those that they must withstand for testing in TREAT (~1 x 1017 n/cm2). The accuracy and precision of these sensors still needs to be determined. Also, it is must be acknowledge that fiber darkening in silica and sapphire may be flux dependent.