ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Thiago H. da Silva, Drew Butler, Austin Biaggne, Nirmala Kandadai, Harish Subbaraman (Boise State Univ), Joshua Daw (INL), Lan Li (Boise State Univ/Center for Advanced Energy Studies)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 448-458
Density functional theory-based calculations and ab-initio molecular dynamics have been performed in order to study the effects of dopants and radiation defects on the structures and optical properties of amorphous silica in comparison to sapphire – another high-temperature and radiation-resistant material. Out studies focused on oxygen deficient centers ODCs (a typical point defect due to radiation damage) and fluorine F dopants. Optical properties depend on dielectric function, calculated from the charge density of the material. With real- and imaginary-part dielectric functions, all the other optical properties, such as refractive index, energy loss function, and absorption coefficient, could be derived. Optical properties of amorphous silica and sapphire become anisotropic with either ODC or F dopants. They contribute characteristic peaks to the optical spectra and induce minor peaks in the low photon energy ranges. Static optical coefficients significantly increase with F dopants, but they might remain or slightly increase with ODC. Our results suggest that adding dopants can improve the optical properties of the materials and potentially inhabit the formation of high-temperature and radiation defects, resulting in an enhancement of the light signal in their transmitted spectra. Controlling dopant concentration also plays a crucial role, because a high dopant concentration could cause a structural distortion and degrade the optical performance of the material.