ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Lee T. Maccarone, Daniel G. Cole (Univ of Pittsburgh), Nageswara S.V. Rao, Alexander M. Melin, Sacit M. Cetiner (ORNL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 411-421
Cyber-physical systems consist of interconnected physical processes and computational re- sources. Because the cyber and physical worlds are integrated, vulnerabilities in both the cyber and physical domains can result in damage to the physical system. As cyber-physical systems, nuclear power plants must be secure in both domains in order to maintain operational safety. Nuclear power plants may be targeted by a variety of threat actors such as state actors, hack- tivists, and disgruntled employees|each with a unique motivation and set of resources. This work predicts the outcome of a cyber-physical attack on a nuclear power plant by examining the interaction between a threat actor and a plant defender. A game-theoretic approach is presented to analyze attacks on cyber-physical systems. The cyber-physical attack is analyzed as a two-player strategic-form game. The two players are an attacker and a defender: the defender attempts to maintain plant operation while the attacker attempts to disrupt it. The attacker's strategy set consists of a cyber attack, physical attack, cyber-physical attack, and abstaining from an attack. The defender's strategy set consists of a cyber reinforcement, physical reinforcement, cyber-physical reinforcement, and abstaining from reinforcement. Each player incurs a cost from either attacking or defending. If an attack is successful, the attacker incurs a gain and the defender incurs a loss. A mixed strategy Nash equilibrium is identi ed. Under the mixed Nash equilibrium conditions, the expected utility of the attacker is zero, and the expected utility of the defender is the cost of cyber-physical reinforcement.