ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
James K. (Jim) Liming (ABS Consulting), Edward L. (Ted) Quinn (Technology Resources)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 308-316
This paper summarizes an updated process for risk-informed surveillance frequency control program (RI-SFCP) implementation at nuclear power stations based on lessons learned in recent years. Since 2008, the authors of this paper have played significant roles in implementing industry initiative 5b RI-SFCPs for 20 nuclear power units operated by 8 nuclear power utility companies. These programs include selection and prioritization of specific target surveillance test interval extensions; and development, review, and implementation of surveillance test risk informed documented evaluation (STRIDE) packages designed to support extension of conventional surveillance requirement test intervals, in accordance with “Risk-Informed Technical Specifications Initiative 5b, Risk-Informed Method for Control of Surveillance Frequencies, Industry Guideline,” NEI 04-10, Revision 1 [1]. The scope of work associated with STRIDE development includes probabilistic risk assessment (PRA) case studies, deterministic assessment (DA) evaluations, and, where required, instrument drift evaluation (IDE). The STRIDE implementation efforts have also included support of independent decision-making panel (IDP) meetings at the implementing power stations and IDP member training. The purpose of this paper is to provide a presentation of a refined process for STRIDE development with a focus on instrumentation and control systems based on author experience, which includes support for the development of 122 plant STRIDEs. This paper outlines a framework for practical implementation of an RI-SFCP within the context of an integrated risk-informed performance-based regulation application program with emphasis on instrumentation and control systems.