ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Muhammad Altahhan, Sandesh Bhaskar, Paolo Balestra, Jason Hou, Maria Avramova (NCSU), Nicholas Smith (Southern Co.)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1248-1256
In this study, a hybrid two-dimensional (2D) / three-dimensional (3D) Liquid Fuel Molten Salt Reactor (LFMSR) core is modelled using the Multi-physics C++ code GeN-Foam (General Nuclear Foam). GeNFoam has three main sub-solvers - for neutron kinetics, thermal hydraulics, and thermal mechanics. A steady state analysis of a simplified 2D LFMSR model has been performed assuming rotational symmetry to cross validate the code with the commercial ANSYS Computational Fluid Dynamics (CFD) code Fluent. The calculations showed a very good agreement between the two codes allowing moving onto a 3D model simulation. A coupled 3D neutron kinetic and CFD steady state analysis of the 3D LFMSR core has been performed modeling one quarter of the core using the core symmetry to reduce the computational time. The GeN-Foam neutron kinetics sub-solver has been designed to consider also the drifting of the delayed neutrons precursors in LFMSR, a capability not yet implemented in the most of current neutron kinetics codes. The mixed Uranium and Plutonium chloride fuel has been selected in this preliminary study. The calculation results meet the expectations showing that GeN-Foam has all the features necessary for LFMSR design modeling and simulation. The delayed neutrons precursors behavior is as expected - the longer-lived isotopes accumulate near the outlet while the short-lived ones lay at the generation location. The calculated maximum temperature is close to the expected one and the velocity profile is consistent with a low viscosity, high density fluid velocity profile.