ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
A. Boulin, J. F. Haquet, P. Piluso (CEA), S. Semenov, M. Antoni (CNRS), T. Washiya, A. Nakayoshi, T. Kitagaki (JAEA)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1080-1090
In the frame of Severe Accident studies, the VULCANO-facility at PLINIUS-platform (CEA - Cadarache) is devoted to the understanding of the interaction of corium with a concrete containment pit (Molten Corium Concrete Interaction-MCCI) [1]. The VULCANO VF-U1 experiment was designed to be closer as possible of the MCCI conditions possibly occurring in the Fukushima F1 reactor considering the coexistence of two dispersed phases (metallic liquid droplets and gaseous bubbles) in a continuous phase (oxide melt liquid). A MCCI industrial code was used to perform predictive calculation of the VF-U1 experiment, being closer as possible of Fukushima 1-F1 MCCI conditions. The results shown that the axial ablation is 8 times higher than the radial one. Then, a multiplicative factor of 8 for the axial heat exchange coefficient must be applied to find the final cavity shape. VULCANO VF-U1 Post-Test Analyses have shown that the metallic phase is preferably close to the vertical concrete walls and at the bottom of the test section whereas a stratification due to density difference between the oxide and the metallic phase is expected (as modeling by the MCCI code). Regarding to the real coupling physical effects in the integral the VULCANO-ICB test and the difficulties for the MCCI code to reproduce experimental behaviors, numerical simulations were conducted. For this purpose, a multiphase Volume Of Fluid (VOF) code at AMU (MADIREL) has been developed . In these calculations, the corium has been modelled numerically under isothermal conditions as a twodimensional dispersed medium with multiple metal drops and gas bubbles. The results showed a possible hydrodynamic re-localization matching to experimental results.