ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Raciel de la Torre Valdés, Juan Luis François (Univ of Mexico), Pedro Morales, Lázaro García (Higher Inst of Technology and Applied Sciences)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1066-1079
Intermediate heat exchangers are one of the most critical devices in the safety of facilities with very high temperature nuclear reactors. In this application, the printed circuit heat exchanger (PCHE) design has shown the greatest advantages in terms of heat transfer, compactness and structural strength. In this work, a thermal-hydraulic model of the zigzag channels PCHE was developed using computational fluid dynamics (CFD) techniques. The Nusselt number and the Fanning friction factor obtained from the CFD model was validated by comparison with correlations published by other authors and found by experimental data. Four geometric parameters of zigzag channels such as: zigzag length, zigzag angle, zigzag radius and zigzag phase-shift were chosen to optimize the PCHE design. With this in view, the model was set up with three channels for each cold and hot fluid, achieving a good accuracy. To consider the interaction among parameters with a reduced computing time, the Taguchi method was used to reduce the quantity of analyzed geometric designs. The zigzag angle was found like the most important geometric parameter in the thermal-hydraulic performance of the PCHE. The maximum value of the Nusselt number had the maximum value of zigzag angle and the minimum friction factor had the minimum value of zigzag angle. This is caused by the increment of the real length of the channels and the appearance of reverse flow zones for higher angles.