ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Jacob P. Gorton, Nicolas R. Brown (Penn State), Soon Kyu Lee, Yonho Lee (Univ of New Mexico)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1022-1027
We present the results of a preliminary comparison of low-pressure transient critical heat flux (CHF) tests conducted in a closed tube test section and best-estimate simulation results. We compare low-pressure experimental CHF test results for stainless steel 316 (SS316) and Inconel 600 test sections to results predicted by models developed in two widely-used thermal hydraulics codes; the system code RELAP5-3D and the Consortium for Advanced Simulation of LWRs (CASL) version of CTF. The objective of the comparison was to determine how well the models would predict CHF and post-CHF tube temperatures and rewetting behavior. The RELAP5-3D and CTF models conservatively predicted the heat flux at which CHF was exceeded for the SS316 models, but both codes showed that CHF was exceeded at a greater heat flux than in the experiment for the Inconel 600 case. RELAP5-3D and CTF overpredicted the post-CHF tube temperature in the SS316 model but underpredicted the Inconel tube temperature, thus demonstrating the need for improved CHF and post-CHF prediction methods for various materials.