ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Rohan Biwalkar, Sola Talabi (Pittsburgh Technical)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 989-1002
An Integrated Small Modular Reactor is an Integral Pressurized-Water Reactor (iPWR) with a relatively high surface-area-to-volume ratio. It has been hypothesized that a higher surface-area-to-volume ratio aids passive aerosol decontamination through various deposition phenomena, namely thermophoresis, diffusiophoresis and gravitational settling. Accordingly, particle deposition was studied within a range of thermal-hydraulic parameters, namely pressure, temperature and A/V ratios, in the presence as well as the absence of steam. It was found that presence of steam, an increasing thermal gradient between the Reactor Vessel (RV) and Containment Vessel (CV) walls, an increasing A/V ratio, and an increasing initial pressure enhance particle deposition. As part of this study, a Computational Fluid Dynamics (CFD) model with the capability to predict particle deposition, particle velocities and steam condensation was developed using User-Defined Functions for the 3-D CFD commercial code CONVERGE. It was found that the CFD results qualitatively agreed with the experimental data in the context of predicting particle deposition with respect to varying thermal-hydraulic parameters. Overall, the aerosol removal mechanisms are sensitive to varying thermal-hydraulic parameters.