ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Rohan Biwalkar, Sola Talabi (Pittsburgh Technical)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 985-988
An Integrated Small Modular Reactor is an Integral Pressurized-Water Reactor (iPWR) with a relatively high surface-area-to-volume ratio. It has been hypothesized that a higher surface-area-to-volume ratio aids passive aerosol decontamination through various deposition phenomena, namely thermophoresis, diffusiophoresis and gravitational settling. Accordingly, particle deposition was studied within a range of thermal-hydraulic parameters, namely pressure, temperature and A/V ratios, in the presence as well as the absence of steam. It was found that an overall convective flow exists inside the Containment Vessel (CV) volume, originating due to fluid buoyancy and the temperature gradient between the Reactor Vessel (RV) and Containment Vessel walls. Computational Fluid Dynamics (CFD) simulations confirmed the existence of this convective flow, and it has experimentally been identified as a major particle transport mechanism. The convective flow also aids particle deposition due to turbulent inertial impaction on the walls. The flow velocities are at least an order of magnitude higher than the deposition velocities by phoretic phenomena; this significantly enhances the importance of the convective flow in contributing to particle transport during post-accident conditions in iPWRs.