ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Junsoo Yoo, Su-Jong Yoon, Thomas E. O’Brien, Konor L. Frick, James E. O’Brien, Piyush Sabharwall, Carl M. Stoots (INL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 860-870
Idaho National Laboratory (INL) is establishing the Dynamic Energy Transport and Integration Lab (DETAIL) as part of its commitment to research on nuclear-renewable hybrid energy systems and associated advanced reactor technologies. DETAIL is designed to allow several different energy systems to work in unison. Current plans include a PWR simulator, high-temperature steam electrolysis (HSTE) unit, and a renewable energy system (e.g., photovoltaics). DETAIL will provide the real world basis for studies on the systems integration and system configurations to be completed. Encompassed in the DETAIL program is the Thermal Energy Storage (TES) system. The TES system is one of the key components in DETAIL because it allows for the delayed release of energy and can be used to simulate storage capabilities currently being considered by utility providers. Of the various TES concepts, this paper deals with the single-tank packed bed TES system. Particular attention is given to the transient thermal behavior of fluid and solid particles within the packed bed thermocline tank and heat storage efficiency influenced by various design parameters. The effects of tank geometry (height-to-diameter ratio), filler size, filler packing ratio and operating temperature differentials are investigated. Based on the parametric study and cost analysis, the optimal TES tank design for DETAIL is discussed.