ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Wadim Jaeger, Wolfgang Hering (KIT)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 846-859
In this paper, a review of experiments related to liquid metal heat transfer under mixed convection is performed. This study is relevant because heat transfer during start-up and shut-down procedures, and operational transients is influenced by natural convection, resulting in mixed convection, which differs considerably from forced convection. Up to now, simulation tools like TRACE, RELAP, etc. apply only forced convection models for liquid metal heat transfer. The influence of mixed convection on the heat transfer during the above mentioned transients is completely ignored. Hence, it is not possible to simulate mixed convection with best-estimate system codes like TRACE or RELAP. In order to perform realistic simulations of plants and experimental facilities mixed convection must be addressed and considered. Therefore, the literature is reviewed for experimental data with liquid metal heat transfer under mixed convection and generally applicable statements and models will be provided. A clear distinction in the heat transfer behavior for low and high Péclet number flows can be identified. Thereby, a Péclet number dependency is visible for higher Péclet numbers (Pe > 100). Furthermore, the heat transfer (Nusselt number) cannot be presented as a function of one dimensionless parameter. To identify underlying phenomena, especially when comparing different experimental scenarios several dimensionless numbers are needed (Gr*, B, Z, etc.). Based on this study, it is possible to derive a model for the heat transfer under mixed convection. Nevertheless, these findings and the sparse number of experiments also indicate the need for new and comprehensive experiments.