ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Robert C. Bowden, Casey Tompkins, Sun-Kyu Yang (CNL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 751-764
In this experimental investigation, mean liquid velocity fields were investigated for turbulent flow within a horizontal 7-rod bundle geometry using Particle Image Velocimetry (PIV). PIV measurements were conducted at two axial locations, near the bundle inlet and also near the mid-plane, and at four Reynolds numbers ranging from approximately 8400 to 21000 based on a hydraulic diameter of 7.636 mm. The axial velocity fields in three different gap regions of the 7-rod bundle were reported, including rod-rod gaps and rod-channel gaps. Statistical techniques were used to describe the velocity fields, including mean and turbulent velocity components. The instantaneous and ensemble-averaged velocities in the gap regions are shown to be aligned in the axial (horizontal) flow direction, with a negligible mean vertical components. It was found that the maximum velocity profile was between 20 to 25% higher than the average velocity, while measured axial turbulent velocity typically ranged between 10 to 20% of the corresponding mean velocity. Profiles of local mean and turbulent velocity components in the gap regions were found to be self-similar when normalized using the maximum velocity, and local velocity, respectively.