ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Robert C. Bowden, Casey Tompkins, Sun-Kyu Yang (CNL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 751-764
In this experimental investigation, mean liquid velocity fields were investigated for turbulent flow within a horizontal 7-rod bundle geometry using Particle Image Velocimetry (PIV). PIV measurements were conducted at two axial locations, near the bundle inlet and also near the mid-plane, and at four Reynolds numbers ranging from approximately 8400 to 21000 based on a hydraulic diameter of 7.636 mm. The axial velocity fields in three different gap regions of the 7-rod bundle were reported, including rod-rod gaps and rod-channel gaps. Statistical techniques were used to describe the velocity fields, including mean and turbulent velocity components. The instantaneous and ensemble-averaged velocities in the gap regions are shown to be aligned in the axial (horizontal) flow direction, with a negligible mean vertical components. It was found that the maximum velocity profile was between 20 to 25% higher than the average velocity, while measured axial turbulent velocity typically ranged between 10 to 20% of the corresponding mean velocity. Profiles of local mean and turbulent velocity components in the gap regions were found to be self-similar when normalized using the maximum velocity, and local velocity, respectively.