ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Kyle E. Brumback, Seth R. Cadell, Brian G. Woods (Oregon State Univ)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 701-713
An investigation into the onset of natural circulation during a depressurized conduction cooldown was conducted at the High Temperature Test Facility at Oregon State University. In this set of four tests, the primary loop of the facility was filled with helium and then heated until a temperature difference across the core was: 125°C, 250°C, 375°C, and 500°C. The Reactor Cavity Simulation Tank (RCST) was filled with nitrogen gas. During the heating phase of the test the primary loop and RCST were held at pressures greater than 130 kPa. Once the desired temperature was achieved the primary loop and RCST pressures were reduced to 112 and 110 kPa, respectively. The cold leg break valve was opened and then the hot leg break valve was opened. The hot helium in the primary loop began to flow into the RCST displacing the cold nitrogen, in a lock exchange flow. Once the density differences equalized in the two tanks, a natural circulation will develop as the gas is heated in the core, flows from into the RCST through the upper plenum, upcomer, and cold leg. Once cooled in the RCST the gas then flows through the hot leg and returns into the core. This paper discusses the findings for each of the four tests and compares the time required for the natural circulation to establish as a function of temperature across the core.