ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Kyle E. Brumback, Seth R. Cadell, Brian G. Woods (Oregon State Univ)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 701-713
An investigation into the onset of natural circulation during a depressurized conduction cooldown was conducted at the High Temperature Test Facility at Oregon State University. In this set of four tests, the primary loop of the facility was filled with helium and then heated until a temperature difference across the core was: 125°C, 250°C, 375°C, and 500°C. The Reactor Cavity Simulation Tank (RCST) was filled with nitrogen gas. During the heating phase of the test the primary loop and RCST were held at pressures greater than 130 kPa. Once the desired temperature was achieved the primary loop and RCST pressures were reduced to 112 and 110 kPa, respectively. The cold leg break valve was opened and then the hot leg break valve was opened. The hot helium in the primary loop began to flow into the RCST displacing the cold nitrogen, in a lock exchange flow. Once the density differences equalized in the two tanks, a natural circulation will develop as the gas is heated in the core, flows from into the RCST through the upper plenum, upcomer, and cold leg. Once cooled in the RCST the gas then flows through the hot leg and returns into the core. This paper discusses the findings for each of the four tests and compares the time required for the natural circulation to establish as a function of temperature across the core.