ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Javier Martinez, Elia Merzari (ANL), Michael Acton, Emilio Baglietto (MIT)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 644-658
The turbulent flow inside a differentially heated cavity at a Rayleigh number of approximately 109 has been studied through a fully resolved Direct Numerical Simulation using the high-order Spectral Element Method code Nek5000. The case chosen for the present paper includes two physical phenomena: the natural recirculation itself, and the flow inside a curved channel that has been added to bottom right corner of the cavity. Solutions are presented as reference for the validation of models when the two physical phenomena are superposed. Simulations have been carried out either using the Boussinesq approximation or a low-Mach compressible formulation. Significant discrepancies between the two methods inform of the extreme necessary caution to consider when using the Boussinesq approximation in the limits of its applicability. Proper resolution of the DNS has been analyzed by considering the polynomial order convergence of the solution and the computation of the Reynolds stresses budgets.