ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Alexander W. Abboud, Donna P. Guillen (INL), Richard Pokorny (UCT Prague)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 557-571
A computational fluid dynamics model was developed to support the testing of a laboratory-scale waste glass melter. This work focuses on providing an understanding of how the heat flux convected from the melt pool is affected by the forced bubbling and by the foam layer underneath the cold cap formed by reaction gases. Simulations were performed for high-level waste glass simulants with viscosities near the minimum and maximum values that are expected during the Hanford tank waste vitrification campaign. The model resolves the forced convection bubbling in the molten glass and bubbles in the foam that forms beneath the cold cap. The glass with higher viscosity shows the formation of significantly larger bubbles to overcome the higher viscous force. The foaming thickness under the cold cap in higher viscosity cases is cleared less easily than the low viscosity glass case. However, the percentage of foam in contact with the cold cap is decreased at higher viscosity since the higher viscous force tends to prevent direct contact. This trend is reversed when there is no forced convection supplied by the bubblers. The heat fluxes at the bottom of the cold cap are compared for cases with and without forced convection bubbling. As expected, the convective heat flux increases with bubbling, and the average values for heat transfer coefficients from the CFD show reasonable agreement with Nusselt number correlations for flat plates.