ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
Su-Jong Yoon, Gilles J. Youinou (INL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 482-492
The Computational Fluid Dynamics (CFD) modeling of wire-wrapped fuel assembly is challenging due to the geometric complexity and many contacts between the wire and fuel rod. To obtain the reliable and accurate predictions in pressure drop, velocity and temperature fields of wire-wrapped geometry, the uncertainty of CFD model should be identified and minimized. The present study conducted the sensitivity tests of pressure drop, velocity and temperature profile to the mesh density, boundary layer mesh and turbulence model by employing a commercially available CFD software, STAR-CCM+ version 12.06.010. The fluid-only and conjugate heat transfer models with 7-pin fuel assembly were adopted to find the baseline model parameters for the full geometry modeling with 217 pins. The CFD results show that the size of mesh and presence of boundary layer mesh play an important role in predictions of the pressure drop. The effects of mesh size, boundary layer mesh and turbulence model on the peak temperature of fluid and cladding wall were not significant. The fluid-only model with closed-gap approach could overestimate the peak temperature around the contacts.