ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Su-Jong Yoon, Gilles J. Youinou (INL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 482-492
The Computational Fluid Dynamics (CFD) modeling of wire-wrapped fuel assembly is challenging due to the geometric complexity and many contacts between the wire and fuel rod. To obtain the reliable and accurate predictions in pressure drop, velocity and temperature fields of wire-wrapped geometry, the uncertainty of CFD model should be identified and minimized. The present study conducted the sensitivity tests of pressure drop, velocity and temperature profile to the mesh density, boundary layer mesh and turbulence model by employing a commercially available CFD software, STAR-CCM+ version 12.06.010. The fluid-only and conjugate heat transfer models with 7-pin fuel assembly were adopted to find the baseline model parameters for the full geometry modeling with 217 pins. The CFD results show that the size of mesh and presence of boundary layer mesh play an important role in predictions of the pressure drop. The effects of mesh size, boundary layer mesh and turbulence model on the peak temperature of fluid and cladding wall were not significant. The fluid-only model with closed-gap approach could overestimate the peak temperature around the contacts.