ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Mingfu He, Youho Lee (Univ of New Mexico)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 449-459
The critical heat flux (CHF) sets the upper limit of efficient heat removal for pool boiling. Microstructures fabricated on a heat transfer substrate can effectively increase the limit of heat removal and delay the boiling crisis. The exact physics mechanisms behind microstructure enhancement still remain ambiguous and CHF prediction on microstructured surfaces is not well resolved even if numerous related studies and experiments have been performed. In this study, the deep belief network (DBN) is proposed to predict CHF and study parametric trends of CHF by collecting relevant CHF datasets from published papers. Performance comparisons with other four common machine learning techniques and three modified Zuber models accounting for the effects of microstructures are conducted for exploring complicated and nonlinear relation between CHF and microstructures. Different from the training process of other regression modelling problems, a special model convergence, which is defined in Subsection 3.1, is required to be incorporated into the CHF model of DBN for exhibiting accurate parametric trends of CHF and improving the prediction accuracy. Numerical results demonstrate that DBN can achieve the best performance of CHF prediction in terms of prediction accuracy. The presented methodology provides new insights for CHF modelling in pool boiling enhanced by microstructures.