ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Amir Ali, Edward Blandford, Youho Lee (Univ of New Mexico), Khalid Hattar (SNL), Hyun-Gil Kim, Dong Jun Park (KAERI)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 428-439
The concept of coating the currently used nuclear fuel cladding (zirconium-based alloy) with an oxidation preventive layer could be a solution to suppress undesirable fast reaction kinetics with high-temperature steam. Critical Heat Flux (CHF) is a thermal-hydraulic performance parameter to investigate for these new cladding concepts including Cr-coated Zirc-based cladding. The exposure of coated Zirc-based cladding for an extensive period inside the reactor to severe conditions of high pressure and temperature, water chemistry, and irradiation environment could result in structure and property changes. These changes would have an impact on the heat transfer performance parameters including CHF. Surface wettability analysis, including contact angle (?) and surface roughness (Ra), are simple surface measurements used in the literature to predict changes in the pool boiling heat transfer coefficient and CHF. This work presents the effects of ion irradiation on surface wettability measurements and predicted pool boiling CHF for bare Zirc-4, and multiple Cr-coated Zirc-based samples of different coating thicknesses (5 - 30 ?m). The Scanning Electron Microscope (SEM) images show no significant surface damages due to ion irradiation. The ion irradiation shows no effects on the measured surface roughness for all samples. Results show that decreasing the Cr-coating thickness results in a higher surface wettability pre- and post- ion irradiation. The irradiated Cr-coated surfaces have higher measured contact angle compared to the unirradiated surfaces. The unpolished coated Zirc samples have larger measured surface roughness compared to the polished surfaces pre- and post- ion irradiation. The predicted pool boiling CHF using the contact angle measurements implemented in Kandlikar model for unirradiated samples is higher than those for irradiated samples.