ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Stephen Bajorek (NRC), David J. Diamond (BNL), Nicholas R. Brown (Penn State), Richard Denning (Consultant)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 291-303
This paper discusses liquid-fuel molten salt reactors, how they will operate under normal, transient, and accident conditions, and the results of an expert elicitation to determine the corresponding thermalhydraulic phenomena important to understanding their behavior. Identifying these phenomena will enable the U.S. Nuclear Regulatory Commission (NRC) to develop or identify modeling functionalities and tools required to carry out confirmatory analyses that examine the validity and accuracy of an applicant’s calculations and help determine the margin of safety in plant design. NRC frequently does an expert elicitation using a Phenomena Identification and Ranking Table (PIRT) to identify and evaluate the state of knowledge of important modeling phenomena. However, few details about the design of these reactors and the sequence of events during accidents are known, so the process used was considered a preliminary PIRT. A panel met to define phenomena that would need to be modeled and considered the impact/importance of each phenomenon with respect to specific figures-of-merit (FoMs) (e.g., salt temperature, velocity, and composition). Each FoM reflected a potential impact on radionuclide release or loss of a barrier to release. The panel considered what the path forward might be with respect to being able to model the phenomenon in a simulation code. Results are explained for both thermal and fast spectrum designs.