ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
T. Q. Hua A. Moisseytsev, A. Karahan, A. M. Tentner, T. Sofu (ANL), S. J. Lee, C. Y. Paik (Fauske & Associates, LLC), J. Liao, P. Ferroni (Westinghouse)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 143-159
Fauske & Associates, LLC (FAI), Argonne National Laboratory (ANL), and Westinghouse Electric Company LLC (Westinghouse) are collaborating within the program “Development of an Integrated Mechanistic Source Term Assessment Capability for Lead- and Sodium-Cooled Fast Reactors”. This program, partially funded by the Department of Energy through the Gateway for Accelerated Innovation in Nuclear (GAIN) initiative, aims at developing a computational framework for predicting radionuclide release from a broad spectrum of accidents that can be postulated to occur at Liquid-Metal Cooled Reactor (LMR) facilities. Specifically, the program couples the transient and severe accident analysis capability of the SAS4A/SASSYS-1 code developed by ANL with the radionuclide transport analysis capability of the FATE (Facility Flow, Aerosol, Thermal, and Explosion) code developed by FAI. The testing of both the individual codes and of the coupled system is performed on a generic Lead Fast Reactor (LFR) design that is intended to capture the key differences between LFR and Sodium Fast Reactor (SFR), around which the SAS4A/SASSYS-1 code has historically been developed and from which the coupled code inherits some features requiring modification before application to LFR systems. Using this approach, a computational framework applicable to both LFR and SFR systems will be obtained, which will assist LMR developers in performing a realistic, scenario-dependent mechanistic source term (MST) assessment expected not only to strengthen their safety case but also to support easier siting and claims on reduced emergency planning zone requirements. This paper discusses the work being performed to adapt the SAS4A/SASSYS-1 and FATE codes to LFR technology, the coupling method implemented, and some of the results of the LFR test case, with the latter aimed at demonstrating the progress made toward the development of the MST analysis capability that is ultimately targeted.