ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Philippe Planquart, Chiara Spaccapaniccia, Giacomo Alessi, Sophia Buckingham (von Karman Inst), Katrien Van Tichelen (SCK-CEN)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 131-142
The thermal-hydraulics challenges of a nuclear reactor are numerous and mastering these is crucial for the design and safety of new reactors. Numerical simulation through computational fluid dynamics (CFD) codes or System Thermal-Hydraulics (STH) codes can address a lot of the different questions, nevertheless the use of water modeling for the study of the thermal-hydraulic behavior of a new primary system and the validation of codes remains an extremely valuable tool. A water model of the pool-type PbBi-cooled MYRRHA reactor has been developed at the von Karman Institute in collaboration with SCK•CEN. It is a full Plexiglas model at a geometrical scale 1/5 of MYRRHA. This transparent water model allows the application of optical measurement techniques, like Particle Image velocimetry (PIV) for the flow characterization. Local results of PIV measurements performed in the lower plenum at the entrance of the core are presented and compared with CFD results for a nominal operating condition and a natural convection case simulating the decay heat removal. A very good agreement has been found in the velocity field. The results also show the importance of the radial flow entering the core of the water model in natural convection.