ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Jun Liao, Danial Utley (Westinghouse)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 117-130
Westinghouse Electric Company is developing its Next Generation of high-capacity nuclear power plant based on Lead Fast Reactor (LFR) technology: a Generation IV, compact, highly simplified, passively safe, and scalable nuclear power plant. In addition to superior economics for enabling competitiveness even in the most challenging electricity market, exceptional safety performance is actively pursued in the design of the plant, leveraging the inherent favorable properties of lead coolant as well as safety features intrinsic in the design. Being decay heat removal an integral part of any plant’s safety philosophy, a systematic process of concept selection has been employed across a wide variety of decay heat removal system designs. Among them, air cooling outside of the reactor vessel is one of the concepts that is being actively evaluated by Westinghouse. In this paper, the use of air cooling in nuclear reactors is discussed together with the identification of benefits and challenges associated with reactor vessel air cooling in LFR technology. The heat removal capability of this system is assessed with three computer codes, differing in complexity and suitability to “rapid prototyping” design activities carried out by Westinghouse during different phases of plant design. Though the computer codes were developed separately, the results of the three evaluation models tend to support each other, thus increasing the confidence in the information provided to progress the Westinghouse LFR design and establish its safety basis. Additional validation through existing and potentially new test data is foreseen as future work within the Westinghouse LFR program.