ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jun Liao, Danial Utley (Westinghouse)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 117-130
Westinghouse Electric Company is developing its Next Generation of high-capacity nuclear power plant based on Lead Fast Reactor (LFR) technology: a Generation IV, compact, highly simplified, passively safe, and scalable nuclear power plant. In addition to superior economics for enabling competitiveness even in the most challenging electricity market, exceptional safety performance is actively pursued in the design of the plant, leveraging the inherent favorable properties of lead coolant as well as safety features intrinsic in the design. Being decay heat removal an integral part of any plant’s safety philosophy, a systematic process of concept selection has been employed across a wide variety of decay heat removal system designs. Among them, air cooling outside of the reactor vessel is one of the concepts that is being actively evaluated by Westinghouse. In this paper, the use of air cooling in nuclear reactors is discussed together with the identification of benefits and challenges associated with reactor vessel air cooling in LFR technology. The heat removal capability of this system is assessed with three computer codes, differing in complexity and suitability to “rapid prototyping” design activities carried out by Westinghouse during different phases of plant design. Though the computer codes were developed separately, the results of the three evaluation models tend to support each other, thus increasing the confidence in the information provided to progress the Westinghouse LFR design and establish its safety basis. Additional validation through existing and potentially new test data is foreseen as future work within the Westinghouse LFR program.