ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
F. Roelofs, D. Dovizio, D. Visser, K. Zwijsen, A. Shams (NRG)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 109-116
European lead fast reactor designs are all pool-type designs. The pool basically forms the primary system of the reactor and as such plays a crucial role in the design and safety analyses of such reactors. The safety analyses require thorough understanding of the flow and heat transport in the primary system. In the past, the design and safety analysis of liquid metal cooled reactors highly relied on design specific experimental set-ups using either a transparent, easy-to-handle simulant fluid relying on scaling analyses or using liquid metals while coping with measurement limitations. Nowadays, Computational Fluid Dynamics (CFD) has become an integral tool of the advanced reactor designer allowing simulations in 3 dimensions. However, in a heavy liquid metal pool, many complex physical phenomena come together. As such, these simulations need separate validation of the capabilities of the applied CFD codes and, on top of that, integral validation using large scale experimental facilities. This paper discusses the ongoing efforts at NRG in the Netherlands on validation of CFD tools for heavy liquid metal pool simulations with respect to flow and heat transport.