ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
F. Roelofs, D. Dovizio, D. Visser, K. Zwijsen, A. Shams (NRG)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 109-116
European lead fast reactor designs are all pool-type designs. The pool basically forms the primary system of the reactor and as such plays a crucial role in the design and safety analyses of such reactors. The safety analyses require thorough understanding of the flow and heat transport in the primary system. In the past, the design and safety analysis of liquid metal cooled reactors highly relied on design specific experimental set-ups using either a transparent, easy-to-handle simulant fluid relying on scaling analyses or using liquid metals while coping with measurement limitations. Nowadays, Computational Fluid Dynamics (CFD) has become an integral tool of the advanced reactor designer allowing simulations in 3 dimensions. However, in a heavy liquid metal pool, many complex physical phenomena come together. As such, these simulations need separate validation of the capabilities of the applied CFD codes and, on top of that, integral validation using large scale experimental facilities. This paper discusses the ongoing efforts at NRG in the Netherlands on validation of CFD tools for heavy liquid metal pool simulations with respect to flow and heat transport.