ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Guanyi Wang, Qingzi Zhu, Mamoru Ishii (Purdue Univ)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 77-87
As a critical closure equation to the two-fluid model and an important tool to characterize the two-phase flow interfacial transport, interfacial area transport equation (IATE) was formulated by taking various physical mechanisms causing interface area change into account. To fulfill the dynamic prediction advantage of the IATE and further replace the flow-regime-based constitutive relations, the IATE model should be validated by transition data to ensure the model reliability and robustness. Air-water experiments are performed in bubbly to slug transitions flows in a 200×10 mm narrow rectangular duct. Four-sensor conductivity probes are used to measure the local void fraction, interfacial area concentration, and bubble velocity at three axial locations. The sectional void fraction distribution changes significantly with the flow developing. Flow conditions with similar area-averaged void fraction but different superficial mixture velocities are compared, and it is found that the superficial liquid velocity obviously affect the interfacial area concentration. The measured data with developing spatial distribution would be useful to benchmark and improve the current two-phase flow models used in CFD. Besides, the two-group IATE model for narrow rectangular channel is evaluated using the collected data. The average relative error for the interfacial area concentration prediction is 11.4%, but the group II IAC are overestimated for most flow conditions. To realize better prediction in bubbly to slug transition flows, improvement of the current IATE model is required.