ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yucheng Fu, Yang Liu (Virginia Tech)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 57-67
Bubble separation and size detecting algorithms are developed in recent years for their promise applications, which include bubble column reactor monitoring, cell counting in vivo, oil droplet characterization in petroleum, etc. In this work, we proposed an architecture called bubble generative adversarial networks (BubGAN) to bridge the gap between the image processing algorithm development and benchmark in bubbly flow measurement. The BubGAN is trained initially on a labeled bubble dataset with ten thousand real bubble images. By learning the distribution of these bubbles, the BubGAN generates a database with million synthetic bubbles. Using this database, BubGAN can then assemble genuine bubbly flow images and provide detailed bubble information with labels on the synthetic images. The BubGAN can serve as a useful tool to benchmark the existing image processing algorithms and to help to guide the future development of bubble detecting algorithms.